当前位置:才华君>好好学习>毕业论文>

矿山环境治理中3S技术的应用实践分析

毕业论文 阅读(2.41W)

摘要:矿产资源是我国经济发展的主要物质资源。但长期以来,国家在矿产资源的开发和利用方面却疏忽了对于环境的治理和生态的保护,破坏了矿区的生态平衡,造成了极大的生产建设负面影响。但随着现代信息技术的迅猛发展,3S技术已经成为矿山环境治理的主要手段,本文将首先概述3S技术的主要内容,再通过实际事例简要分析3S技术的具体应用。

矿山环境治理中3S技术的应用实践分析

关键词:矿区环境治理 生态环境 地质灾害

对矿产资源的过度采集导致了矿山的生态环境恶劣,它主要包括了生态破坏、地质灾害和环境污染,所以矿山环境问题已经成为世界各国都重点关注的对象。

1、3S技术

3S技术所指的是RS遥感技术,GIS地理信息系统以及GPS全球定位系统。这三项技术各有所长,是空间通信技术、传感器计算机技术与卫星定位导航技术的结合体。

1.1遥感技术

遥感(Remote Sensing,RS)是一种具有对地观测性能的综合性技术。它的应用主体就是遥感探测仪。遥感探测仪能够做到不接触探测目标就能远程将目标的电磁波特性完全记录下来,数据被记录之后对其进行综合性解析,最终获得需要的结果。

遥感系统包含五大部分,分别为:测量目标的信息特征、信息获取、信息传输记录、信息处理以及信息应用,是一种集数据性、时效性和经济性为一体的现代化高科技工程设备。

1.2地理信息系统

地理信息系统(Geographic Information System,GIS)是一种全面的地理空间信息系统。它可以在计算机软硬件的联合支持下,完成对地球部分表层甚至是大气层空间中的地理数据分析,其对信息的处理流程和遥感技术类似,但是GIS还具备虚拟3D建模功能,能够为用户提供极为直观的图形数据,使用户更方便快捷得了解到所测地理位置的一切地理信息。

1.3全球定位系统

全球定位系统(Global Position System,GPS)即大家熟知的全球定位卫星导航系统。它的工作原理就是通过地球以外的若干颗导航卫星进行无线电信号交互传输,从而达到对地球表面指定地点的'定位、报时和对地表移动物体的导航。

GPS作为一种世界普及的全球性定位手段,具有静态和动态两种定位选择。它们解决了姿态快速变化后的定位与传感器的位置等问题,所以人们才能通过某些便携设备就能完成定位任务,而且这种空间位置的获取和表达形式是三维立体的。GPS在3S技术中作用很大,它能够辅助GS及GIS进行精确定位、定时,也能为运动物体进行测速,为3S技术增添了更多的功能性选择。

2、3S在具体工程实例中的应用

2.1工程地质概况

文中所借鉴的工程实例是位于中国西部的攀枝花某矿山,矿山工作区位于青藏高原东段,东临四川盆地、西接横断山脉、南靠金沙江。具有峡谷、盆地、丘陵、山原等多种地貌,工作区的相对海拔为1500米。在工作区周围有95条大小河流,它们分属于不同的水系――金沙江水系与雅砻江水系。由于两江年过境径流量高达1102亿立方米以上,所以在水系周围有正在运行的水电站数座,总发电量可达700万千瓦以上。另外,工作区矿产资源丰富,是全国四大铁矿之一,而且还具有相当多品种的稀有矿资源,发展前景良好,是攀枝花的主要矿产开采区。

2.2矿区土地信息的提取

采用人机交互式的解译方法,再根据QuickBird所提供的彩色图像来提取信息。它可以将数据、图形与影像以叠加的方式统计出来,达到三者的一致,方便查看与分析。

它的信息提取步骤为:

首先通过ERDAS Imagine软件进行土地利用/覆被信息图像的建立,并且图像要通过QuickBird进行处理、编码和赋值。

第二步要进行栅格数据的分类并完全转化为矢量数据。

接下来要使用workstation平台进行土地利用类型特征的分类,并修改矢量数据,赋予土地应有的地类属性。

2.3野外验证

野外验证要首先设计好考察路线,然后根据所要考察的内容进行设备配置。GPS是野外验证不可或缺的重要设备,它能够进行信息的接收定位,结合人机交互解译数据和GS影像进行数据的验证和修改。

本次矿山工作区在野外考察时,GPS接收设备跟踪到的卫星不应该少于4颗,在测量后要把每个测点的经纬度都记录下来。再根据数据收集来结合GS监测所获得的数据源进行精度的判读,选择目标必须是2.5℃以上的地物。在拍摄后要严格检查照片的格式,分辨率以及存储方式。

2.4生态环境质量的评价值计算

首先利用人机交互的解译方法和QuickBird图像进行该矿区土地利用/覆被信息的提取,然后对它的土地现状结构展开分析。土地利用结构分析要涉及土地的面积和比例来表示,即:

在上述两个公式中,S(i,t)表示t时期内土地类型i的面积,Ax则表示了土地类型i第x斑块的面积;Pi表示土地类型i的面积之于总面积的相对比例,而m为土地利用的类型数。GS的图像解译显示了2012年1月该矿区的土地利用类型和数量。其中面积最大的是林地,具有2133公顷,它占到工作区总面积的33.21%,然后是旱地,面积有1932公顷,第三位的是排土场面积,也有月1303公顷。排土场的大面积覆盖说明了工作区的生态环境并不良好。

该矿山工作区的生态环境质量评价采用了目标层逐层计算的方法,直到计算达到最高层为止。其计算公式为:

在公式中,A即代表了本文中的实例矿区评价值,Di代表了因子指标标准化值,ωi表示因子指标的相应权重值,而j和m则分别指代元指标的序号。

评价等级值的计算要在矿山工作区生态环境评价的基础上进行,我国目前采用较多的是人为分级,首先要根据矿区的生态环境来合理划分其环境质量等级;其次要设立矿山生态环境的评价因子指标等级阈值。再用矿区的环境质量评价值计算每一等级的阈值;最后根据综合阈值来建立整个矿山工作区的生态环境综合评价等级,并确定各等级区域内的生态环境区间范围值。最终根据这些确切的数据设立生态环境保护体系,确保矿区的生态稳定。

3、总结

本文通过3S技术实现了对攀枝花矿山工作区生态环境的土地信息提取、实地野外考察和最后的生态监测等级评价。确立了每一个地区的生态环境等级,以便于日后的环境保护,避免矿产开采过度再次打破矿区的生态平衡。这样的3S技术应该在我国的每一处矿区都得到积极的推广和应用,并进一步拓展3S技术的综合评价范围,例如区域人文、自然环境等等。

参考文献:

[1]周春兰.“3S”技术在矿山生态环境监测中的应用研究――以攀枝花宝鼎煤矿为例[D].成都理工大学,2009.

[2]孟猛,宗美娟.3S技术在矿山环境治理中的应用[J].中国矿业,2011,20(9).

[3]顾广明,王丽,蒋德林等.3S技术在煤矿区开发现状及环境监测中的应用[J].煤田地质与勘探,2006,34(5).